

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SOURCE FINGERPRINTING IN ADOBE PDF FILES

by

John P. Donaldson

December 2013

Thesis Advisor: Chris S. Eagle
Second Reader: George W. Dinolt

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
SOURCE FINGERPRINTING IN ADOBE PDF FILES

5. FUNDING NUMBERS

6. AUTHOR(S) John P. Donaldson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Science Foundation Grant No. DUE- 0912048
National Science Foundation Grant No. DUE- 1241432

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Adobe Portable Document Format (PDF) documents are increasingly used as a vector for targeted attacks. Although
there exist a number of tools and methodologies for performing content-level analysis to identify unwanted or
malicious behavior or characteristics in these documents, these forms of analysis are hampered by increasingly
complex obfuscation techniques and usually require execution of potentially malicious code. This thesis proposes a
static analysis method that uses structural elements of PDF documents to identify the tools used to generate them.
This method may be used to attribute malicious PDFs to particular toolkits.

14. SUBJECT TERMS Static analysis, Adobe, Portable Document Format, PDF, structural analysis,
n-gram analysis, document authorship

15. NUMBER OF
PAGES

59

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SOURCE FINGERPRINTING IN ADOBE PDF FILES

John P. Donaldson
Civilian, Department of the Navy

B.S., Northwest Nazarene University, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2013

Author: John P. Donaldson

Approved by: Chris S. Eagle
Thesis Advisor

George W. Dinolt
Second Reader

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Adobe Portable Document Format (PDF) documents are increasingly used as a vector for

targeted attacks. Although there exist a number of tools and methodologies for

performing content-level analysis to identify unwanted or malicious behavior or

characteristics in these documents, these forms of analysis are hampered by increasingly

complex obfuscation techniques and usually require execution of potentially malicious

code. This thesis proposes a static analysis method that uses structural elements of PDF

documents to identify the tools used to generate them. This method may be used to

attribute malicious PDFs to particular toolkits.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

DISCLAIMER

Partial support for this work was provided by the National Science Foundation’s

CyberCorps®: Scholarship for Service (SFS) program under Award No. DUE- 0912048

and DUE-1241432. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation.

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

TABLE OF CONTENTS

I. INTRODUCTION..1
A. INTRODUCTION..1
B. ORGANIZATION OF THESIS ...2

II. BACKGROUND ..3
A. PORTABLE DOCUMENT FORMAT ..3
B. RELATED WORK ..8

III. DESIGN AND METHODOLOGY ..11
A. ENVIRONMENT ...11
B. METHODOLOGY ..11

1. Document Generation ..11
2. Structural Signature Generation ..13
3. Developing Structural Signature Classifiers14

a. Regular Expressions ...14
b. N-gram Analysis ..14

4. Classifying Document Structures ...15
a. Regular Expressions ...15
b. N-gram Analysis ..15

IV. RESULTS AND CONCLUSIONS ...17
A. RESULTS ...17

1. Signature Generation ...17
2. Document Classification ..18

a. Regular Expressions ...18
b. N-gram Analysis ..19

B. CONCLUSIONS ..23

V. FUTURE WORK ...25

APPENDIX ...29
A. SCRIPT USED TO GENERATE METHOD #1 SIGNATURES

(GETSTRUCTURE.SH) ...29
B. SCRIPT USED TO GENERATE METHOD #2 SIGNATURES

(GETSTRUCTURE.PY) ...30
C. SCRIPT USED TO CLASSIFY STRUCTURAL SIGNATURES

WITH REGULAR EXPRESSIONS (CLASSIFYSTRUCTURE.PY)30
D. STRUCTUREFINGERPRINTS.PY ..31
E. N-GRAM ANALYSIS AND CLASSIFICATION PROGRAM

(NGRAMCLASSIFY.PY) ...32

LIST OF REFERENCES ..37

INITIAL DISTRIBUTION LIST ...41

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. The four major sections of a PDF document ...3
Figure 2. An ASCII representation of the first 80 bytes of a sample PDF document,

including the document header and the beginning of an indirect object and
stream. ..4

Figure 3. A sample PDF indirect object, object 1, generation 0, of the type “Pages,”
which includes a field, “Kids,” with an indirect reference to generation 0
of object 6, and a field, “Count,” equal to 1. ..4

Figure 4. A sample PDF cross-reference table, with one subsection and 15 items6
Figure 5. A sample PDF trailer section ...6
Figure 6. A sample PDF structural signature ..13
Figure 7. A structural signature, generated with method #1, for a sample document

created with Adobe Acrobat ..18
Figure 8. A structural signature, generated with method #1, for a sample document

created with Microsoft Word and saved using Adobe PDFMaker18
Figure 9. A structural signature, generated with method #1, for a sample document

created with Nitro8 ..18
Figure 10. A structural signature, generated with method #2, for a sample document

created with Adobe Acrobat ..18
Figure 11. Graph representing n-gram classification accuracy against 56 training

documents for n-gram sizes one through 16 and signature generation
methods #1 and #2 ...21

Figure 12. Graph representing n-gram classification accuracy in five-fold cross-
validation, per-set, for n-gram sizes one through 16 and signature
generation method #1 ...22

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Software used to generate sample PDF documents ...11
Table 2. Software content generation options used ...12
Table 3. Software output methods and options used ...12
Table 4. Sample n-gram scores for documents generated with LibreOffice, with n-

grams of size two ...15
Table 5. Sample programs scores for the n-gram “Catalog,Page”16
Table 6. Sample classification scores for the sample document in Figure 6, using

n-grams of size two, indicating that the tool most likely used to create the
document was Abiword. ..16

Table 7. Time to extract structural signatures for training documents17
Table 8. Time to extract structural signatures for selected NPS Govdocs1

documents ..17
Table 9. Regular expressions used for classifying fingerprints generated with

method #1...19
Table 10. N-gram classification results against 56 training documents with n-grams

of size n and signature generation method #1 ..20
Table 11. N-gram classification results against 56 training documents with n-grams

of size n and signature generation method #2 ..21
Table 12. Per-program n-gram classification accuracy for n-grams of size four and

signature generation method #1 ...23
Table 13. Per-program n-gram classification accuracy for n-grams of size four and

signature generation method #2 ...23

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

ASCII American Standard Code for Information Interchange

DOCX Office Open XML Document format

DVI Device Independent File Format

ISO International Organization for Standardization

JPEG Joint Photographic Experts Group

PDF Portable Document Format

PDF/A PDF for Archive

PDF/E PDF for Engineering

PDF/X PDF for Exchange

SCAP Source Code Author Profiles

TIFF Tagged Image File Format

XRef Cross-reference table

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. INTRODUCTION

The Adobe Portable Document Format is a widely-used format for online

document interchange. Roughly 23.4 % of the 986,278 documents in the NPS Govdocs1

corpus consists of PDF documents [1]. A wide variety of tools can, either as part of their

core functionality or as an add-on, read or write PDF documents. It is the PDF format’s

very ubiquity that has made it a tempting vehicle for targeting vulnerable applications.

In 2012, Symantec reported that 11% of all targeted attacks involved exploits

against PDF-rendering applications, a figure that does not include non-targeted,

opportunistic attacks [2]. Figures from F-Secure for 2008–2010 indicate that anywhere

from 28–61% of targeted attacks involved PDF exploits, with a steadily increasing trend

[3], [4]. In the last quarter of 2012 alone, Microsoft reported more than a 100% increase

in the number of detected attacks that used vulnerabilities in Adobe Reader and Adobe

Acrobat to execute malicious Javascript payloads [5]. The mechanisms for the most

common of these attacks are detailed in Chapter II, Section A.

In order to better profile the authors behind these attacks, there is interest in

identifying the tools that they are using to create their malicious PDF documents. If an

attacker uses an uncommon or custom tool, and that tool’s signature can be identified in

a document, regardless of the particular content or possible exploitation mechanisms and

payloads, it may be possible to more easily identify potentially-malicious documents or

attribute documents to a common source. Analysis of in-band, PDF-specific metadata,

such as the reported creating program, can be insightful, but metadata can also be deleted

or modified with various tools [6].

This thesis will attempt to identify a method for identifying the toolkits used by

content authors to generate PDF documents. This will include benign documents. It will

not attempt to identify signatures of particular exploits or malicious content, and will, to

the greatest extent possible, avoid using signatures that are based on user-provided

 2

content or easily-modified data, such as document-provided metadata. Additionally, any

selected methods should be fast enough to support real-time analysis.

B. ORGANIZATION OF THESIS

This thesis is organized into five chapters. The first chapter introduces the topic of

PDF document forensics. The second explains background information useful to

understand the structure of PDF documents, as well as related prior work. The third

chapter describes the experimental methodology for identifying and classifying these

documents. The fourth discusses results from the identification and classification process

and gives a conclusion for the thesis. Finally, the fifth chapter addresses possible

directions for future development.

 3

II. BACKGROUND

A. PORTABLE DOCUMENT FORMAT

The Adobe PDF standard was first released in 1993, coinciding with the release of

Adobe Acrobat 1.0 [7], [8]. Each release of the standard has been backwards compatible

with prior releases, allowing a PDF 1.5-compliant reader to open a PDF 1.5-, 1.4-, 1.3,

1.2, 1.1, or 1.0-compliant file, and so on. Releases have added new supported features,

such as encryption, embedded images, forms, or digital signatures. In 2008, the eighth

release of the PDF standard, PDF 1.7, was codified as the ISO standard ISO 32000–1 [9,

10]. There are further specialized extensions to the standard, such as PDF/A [11], PDF/E,

and PDF/X, which are intended for archival, engineering, and graphics interchange

purposes, respectively. Adobe has continued to add features to the PDF format outside of

the ISO standard, in the form of supplements [12].

A canonical PDF documents is composed of four main sections, a header, the

body, a cross-reference table, and a trailer (see Figure 1) [13], [14].

Header

Body

Cross-reference table

Trailer

Figure 1. The four major sections of a PDF document

The header contains the version number of the PDF standard that the document

uses, in the format “%PDF-<version_number>,” and is followed by a newline character

(see Figure 2).

 4

Figure 2. An ASCII representation of the first 80 bytes of a sample PDF
document, including the document header and the beginning of an

indirect object and stream.

The body of the file contains a sequence of objects that define the content and

appearance of the document. There are two types of objects: direct objects and indirect

objects. Direct objects are unlabeled primitives that cannot be referred to by other

objects, and are similar to literal values present in other programming languages. Indirect

objects are labeled in such a way that other objects can refer to them. Indirect objects

appear in the file preceded by an object number, a generation number, and the keyword

“obj,” and are terminated with the keyword “endobj” (see Figure 3). The object number

and generation number are used to uniquely identify objects. Generation numbers identify

the version of an object, and initially start at 0, growing as large as 65,535 as an object is

updated or reused. This functionality is intended to allow a program to deallocate an

object’s memory space, and then place new content in its place, to avoid having to

rewrite an entire file for small updates.

Figure 3. A sample PDF indirect object, object 1, generation 0, of the type “Pages,”
which includes a field, “Kids,” with an indirect reference to generation 0 of

object 6, and a field, “Count,” equal to 1.

Indirect objects may contain embedded direct objects, such as strings, streams of

arbitrary binary data, and numeric values, or references to other indirect objects. These

objects may contain dictionaries of fields that describe aspects of the object, such as its

type, hierarchical relationships to other objects, font definitions, or displayed contents. A

 5

record of recognized object types is maintained by Adobe, and new types must be

registered through them.

Data stored in streams may be encoded or encrypted through the use of filters.

Filters support a variety of transformations, such as mapping binary data to a

hexadecimal representation, or a number of compression schemes. Additionally, content

may be encoded using any of several encryption algorithms, such as RC4, DES, 3DES, or

AES. The format also supports PKI mechanisms to protect or authenticate content. These

filter mechanisms only apply to complex content and not to primitive numbers, Boolean

values, or entire objects, except for objects that appear in object streams. Object streams

are a type of stream, introduced in PDF 1.5, which allows for objects to be grouped

together, with the goal of allowing more efficient compression of large numbers of

objects.

The cross-reference table allows PDF parsers to quickly locate indirect objects

within a document. It begins with the keyword “xref” and can contain multiple

subsections, each beginning with a line containing the number of the first object and the

number of objects in the subsection. Each following line, one per object in the subsection,

includes a 10-digit byte offset into the file, a five-digit generation number, and either the

character ‘f’ or ‘n’, indicating whether the object defined on that line is either free or in

use, respectively. The space occupied by free objects may be reused when new content is

added to a document, instead of appending the new object to the end of the document.

The first object in the cross-reference table is always free and has the largest possible

generation number, 65,535 (see Figure 4). Further cross-reference tables can be defined

as indirect objects, with the type “XRef.”

 6

Figure 4. A sample PDF cross-reference table, with one subsection and 15 items

The final section of a PDF document is the trailer. This section begins with the

keyword “trailer,” immediately followed by a dictionary containing information about

how to start constructing the document. Required keys include the size of the cross-

reference table and the root of the document’s catalog. Following the “startxref” keyword

is the byte offset into the file of the cross-reference table. The final line contains the

keyword “%%EOF” (see Figure 5).

Figure 5. A sample PDF trailer section

It is possible for a document to contain multiple trailers and cross-reference

tables. In this case, the trailer dictionary will contain a key, “Prev,” which points to the

offset of the previous cross-reference tables. This usually happens when an application

 7

makes incremental updates to a document, allowing it to add material without altering

earlier content, by chaining together cross-reference and trailer sections.

The PDF specification does not specify the order in which indirect objects should

appear in a document, physically or logically, with the exception of Linearized” PDFs.

These are documents whose internal representation has been ordered in such a way that a

reader may begin to render the document before it has been fully parsed or loaded,

typically by including objects with content that appears earlier in the document closer to

the beginning of the file. Additionally, these documents contain “hint tables,” which

provide a reader application with information about where objects exist within the file,

before reading a cross-reference table, allowing the reader to locate objects that may have

already been loaded or request out-of-order portions of the document from the backing

storage device. The only ordering requirement for Linearized PDFs is that an object

containing a linearization parameter dictionary must appear in the first 1024 bytes of the

document. This dictionary object contains basic information about the document, such as

the location of the hint tables and number of pages, and serves as an indicator to reader

applications that they are opening a Linearized PDF without having to process more than

the first 1024 bytes.

The elements of PDF documents described in this section are taken from the most

current PDF specification. However, many readers, including Adobe’s products, will

accept documents as valid that do not conform to the specification. For example, some

readers will accept documents which entirely omit the cross-reference section in lieu of

cross-reference objects, or which contain no trailer section, both of which are described

as elements of a canonical PDF document. The PDF specification indicates that the

keyword “%%EOF” must be the final element on a valid document, but, in an appendix

to the PDF 1.7 specification, Adobe indicates that their products will validate a document

if the keyword appears anywhere in the final 1024 bytes. As a result of these

acknowledged inaccuracies in the specification’s implementations, the validity of a PDF

document is perhaps not best described in terms of how well it adheres to the

specification, but in whether or not Adobe Reader will open it.

 8

Logically, the root of a PDF document is the document catalog. The document

catalog is an indirect object containing rendering information such as dictionaries of

pages, supported extensions, forms, layout information, metadata, tables of contents, and

actions that are performed when a document is opened. The extensions dictionary is the

vehicle by which non-ISO updates are supported to add new features.

Most attacks involving a maliciously-crafted PDF document leverage flaws in a

reader application’s implementation of specific content handlers. For example, an

attacker may embed a JPEG or TIFF image that exploits a vulnerability in the handler for

those image types. Since PDF 1.3, Javascript may be embedded in PDF documents, and

many reader applications, including Adobe’s Acrobat line of products, include an

embedded Javascript engine [13], [15]. The inclusion of Javascript not only provides an

additional attack surface for adversaries, but also a rich API for interacting with the

system, beyond what is normally possible for a PDF document. A document may specify

actions that are to take place automatically when it is opened, or upon certain user

actions, such as clicking a button or entering text into a form. These actions may include

the execution of Javascript or system commands. Some applications notify users of these

actions, or require confirmation, but this is often poorly implemented, and it may be

possible to use social engineering to convince users to permit these behaviors [16].

B. RELATED WORK

There is little work dedicated to non-content-based analysis of PDF documents,

but there are a number of tools and methodologies intended to perform content-level

analysis. Smutz and Stavrou developed a means to identify malicious content in PDF

documents through structural analysis [17]. Additionally, they were able to further

classify attacks involving these documents as either broadly-distributed opportunistic

attacks, or targeted attacks. However, their approach is intended to identify malicious

behaviors and signatures, and not to identify or classify toolkits used to create the

documents.

There is a large body of work on authorship identification in documents, but most

of the work focuses on analyzing human languages in plain-text documents, which is not

 9

particularly well-suited to the binary content in PDF documents. Frantzeskou et al.

developed an approach, called SCAP, which uses binary n-gram analysis to identify

human authors of compiled programs written in a variety of programming languages

[18]. However, this approach is highly dependent on the programming language being

profiled, and it is unknown how effective it may be against the PDF specification

language, or how it may interact with embedded content, such as images, which may

appear in a PDF document. Additionally, we were not certain if these approaches could

be desensitized enough to provide coarse enough results, which would be resistant to

changes caused by human-provided input and content.

More closely related is work by Rosenblum et al., related to analyzing compiled

programs to identify their compilers [19]. Their approach identifies idiomatic instruction

sequences particular to each compiler and uses the sequences to fingerprint the compiler.

However, their methodology depends on disassembling binaries from arbitrary byte-

offsets, and it is unclear if it could be adapted to work with similar analysis of PDF files.

Most PDF tools are intended to process or manipulate the content of a document,

and only a few tools exist that are intended to inspect the structure of PDF documents.

Pyew is a Python-based tool for statically analyzing a variety of file formats, including

PDFs [20]. Although Pyew does offer some support for structural analysis, it is best

suited for extracting and analyzing content from PDF objects. Jose Esparza’s Peepdf tool

also offers similar capabilities for PDF documents, and can generate a representation of

the logical structure of a document [21]. Oragami-pdf offers similar features, in addition

to content modification capabilities [22]. However, both Peepdf and Oragami-pdf are

limited to inspecting the logical structure of a document, and not the actual ordering of

structural elements as they appear in the raw file Didier Stevens has produced a number

of tools intended for analyzing PDF documents, as well as documentation on analysis and

obfuscation techniques, largely with a focus on identifying potentially malicious

documents [23], [24], [25].

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. DESIGN AND METHODOLOGY

A. ENVIRONMENT

Our experiments were conducted in a VMWare virtual machine running 32-bit

Fedora 16 with one GB of RAM, running on a host with four GB of RAM and a 1.66Ghz

Intel Atom processor.

B. METHODOLOGY

1. Document Generation

We generated 57 documents using nine tools (see Table 1) with a variety of

settings and inputs to serve as a training set, against which to build and test signatures.

Authoring Tool Operating System
AbiWord 2.8.6 [26] Fedora 16
Adobe Acrobat XI Professional [27] Windows 8
FreePDFConvert.com [28] Web-based
LibreOffice 3.4 340m1(Build:602) [29] Windows 8
Microsoft Office 2007 SP3 [30] Windows 8
Neevia [31] Web-based
Nitro Pro 8 [32] Windows 8
PDFOnline [33] Web-based
WordPerfect X6 [34] Windows 8

Table 1. Software used to generate sample PDF documents

The documents were generated with one page of text, two pages of text, or

embedded images. We created this content natively with some tools, but other tools

converted a pre-existing document into a new PDF document (see Table 2). In the case of

native functionality, we typed content or inserted images directly into the tool, then saved

the document as a PDF file. When using a tool to convert a DOCX [35] file into a PDF,

we created an intermediate DOCX file using Microsoft Office 2007. When a tool

supported importing a PDF document, the PDF generated by Microsoft Office was used

as input. One of the evaluated tools, Nitro Pro 8, supported plaintext ASCII files as input.

 12

Authoring Tool Content Generation
Methods

AbiWord Native (text only)
Adobe Acrobat Native, import from PDF
FreePDFConvert.com Import from DOCX
LibreOffice Native
Microsoft Office 2007 Native
Neevia Import from DOCX
Nitro Pro 8 Native, import from DOCX,

import from ASCII plaintext
PDFOnline Import from DOCX
WordPerfect X6 Native, import from PDF

Table 2. Software content generation options used

Several tools included additional output options, beyond their default settings. We

tested several of these output options (see Table 3). The most common among these

include “optimized” or “minimum” formats, referred to in the Adobe PDF Reference as

Linearized PDF. The next common output option was to create PDF/A-compatible

documents. PDF/A documents use a subset of the features in normal PDF documents, and

must embed all resources, such as fonts, into the document, that might normally be

expected to be provided by the host system. Finally, Adobe PDFMaker [36] is a generic

printer driver plugin that allows software without native PDF-generation capabilities to

produce PDF documents through their print functionality. It is installed as a part of the

Adobe Acrobat XI Professional suite.

Authoring Tool Output Formats
AbiWord Default
Adobe Acrobat Default, Optimized, PDF/A
FreePDFConvert.com Default
LibreOffice Default, PDF/A
Microsoft Office 2007 Default, Minimum, PDFMaker
Neevia Default
Nitro Pro 8 Default
PDFOnline Default
WordPerfect X6 Default

Table 3. Software output methods and options used

 13

Additionally, we downloaded 5267 PDF documents from the Govdocs1 corpus

[37] to serve as real-world examples. These documents were used to test structural

signature generation performance on a larger and more complex set of documents than

the ones that we generated for training purposes.

2. Structural Signature Generation

We developed two methods for generating structural signatures for PDF

documents. Both methods generate a series of tokens, representing an ordering of the

types of all of the indirect objects within a document. For convenience, we represent this

series as a comma-delimited list (see Figure 6). The tools for both methods produce a list,

in this format, as output, which is later used as input for our classification tools. For

development purposes, these structural signatures are created once and saved separately

from the original document, so that, while testing classification tools and methodologies,

the signature did not need to be regenerated each time.

Figure 6. A sample PDF structural signature

The first method leverages Didier Stevens pdf-parser.py tool [23] to parse a PDF

document and identify indirect objects. Pdf-parser.py accepts a PDF document as input

and produces a listing of object information or document statistics, or extracts the

contents of objects. We process the object listing of a document to generate an ordered

set of object types, as they appear in the file. We refer to this method later in this

document as Method #1. Code for this method is located in Section A of the Appendix.

The second method scans the raw content of a PDF document with a regular

expression to identify instances of the keyword “Type,” and extracts the object type

following the keyword, using a Python program. We refer to this method later in this

document as Method #2. Code for this method is located in Section B of the Appendix.

 14

Timing information for both methods was obtained by using the total execution

time from the Linux “time” command while generating signatures for our simple

generated files, the entirety of our sample from the NPS Govdocs1 corpus [37], and a

smaller subset of 969 documents from the NPS corpus. This subset was chosen by

grouping documents from the larger sample by their metadata-indicated creator, and

selecting the largest group.

3. Developing Structural Signature Classifiers

a. Regular Expressions

By comparing the structural signatures of our training documents, grouped

by the tools that were used to create them, we visually identified unique patterns or

positions of elements common only to that tool. These patterns were represented as

regular expressions. As additional classifiers were built, it became necessary to refine

some regular expressions in order to prevent false positives. Some tools required multiple

regular expressions in order to capture the signatures of their output.

b. N-gram Analysis

Word n-grams of various sizes were extracted from the structural

signatures, and used to build a simple profile for each of the authoring tools. N-grams are

sequences of tokens, in this case, of structural elements, of arbitrary length, n. To build a

profile, we calculated the probability of a given n-gram appearing in all of the n-grams

associated with one tool (see Table 4). This was repeated for all n-gram lengths less than

or equal to the length of the longest signature in our dataset.

 15

N‐gram Score

StructTreeRoot‐Pages 0.076923

StructElem‐StructElem 0.153846

Pages‐Catalog 0.115385

Page‐Page 0.076923

FontDescriptor‐Font 0.115385

Metadata‐StructElem 0.076923

Page‐OutputIntent 0.076923

Page‐Pages 0.038462

OutputIntent‐Metadata 0.076923

StructElem‐StructTreeRoot 0.076923

Font‐Page 0.115385

Table 4. Sample n-gram scores for documents generated with
LibreOffice, with n-grams of size two

4. Classifying Document Structures

a. Regular Expressions

After creating regular expressions for each tool, we could test their ability

to accurately classify documents that were created by the tools. Our script,

classifyStructure.py (see Section C of the Appendix), accepted a comma-delimited list of

structural elements as input, as generated by our signature-generation tools, then tested

the input against each regular expression. If a regular expression matched the input, we

output the respective matching program as a possible match. For the best possible

accuracy, we allowed the possibility of multiple matching programs.

b. N-gram Analysis

Given an unknown sample, we extracted n-grams of the same size as those

used to generate the profiles. For each extracted n-gram that matched an n-gram in our

profiles, we added the score for each associated tool to a running total for each tool. After

examining all n-grams in the sample, we returned the highest-scoring program as

the most likely tool to have created the unknown sample (see Tables 5 and 6. Five-fold

cross-validation was performed to estimate the accuracy of the classifier for several sizes

of n-grams.

 16

adobe 0.105882

nitro 0.071429

wordperfect 0.142857

pdfonline 0.238095

Table 5. Sample programs scores for the n-gram “Catalog,Page”

Program N‐gram Total Score

Page
FontDescriptor

FontDescriptor
Font

Font
Font

Font
Pages

Pages
Catalog

Abiword 0.200 0.200 0.200 0.200 0.200 1.000

PDFOnline 0.095 0.095

LibreOffice 0.115 0.115 0.231

Nitro 0.095 0.095

Neevia 0.152 0.152

FreePDFConvert 0.029 0.029

Table 6. Sample classification scores for the sample document in Figure 6.
using n-grams of size two, indicating that the tool most likely used to

create the document was Abiword.

 17

IV. RESULTS AND CONCLUSIONS

A. RESULTS

1. Signature Generation

Both signature generation methods had advantages and disadvantages. The first

method took more time to generate a signature, up to tens of seconds, on average (see

Tables 7 and 8), but generated more reliable output that is more closely indicative of what

a PDF reader program will actually recognize as indirect Type tokens. The second

method was significantly faster, but may generate incorrect signatures if the keyword

“Type” appears in a context where it does not indicate an indirect object’s type, or if it

exists in an invalid object that is not referenced by a cross-reference table. Additionally,

some embedded direct objects contained type definitions, but these objects were not

extracted by the first method. In our training set, these variations appeared regular and

predictable, so we were able to make small changes to our regular expression-based

identifying fingerprints to account for the differences with no loss in accuracy.

Number of files Generation Method Total Time Average time (per file)
58
 Parsing (method #1) 1m 14.877s 1.291s
 Raw (method #2) 0m 0.411s 0.007s

Table 7. Time to extract structural signatures for training documents

Number of files Generation Method Total Time Average time (per file)
5267
 Parsing (method #1) Approx. 3 days
 Raw (method #2) 3m 21.547s 0.038s
969
 Parsing (method #1) 301m25.740s 18.664s
 Raw (method #2) 0m59.363s 0.061

Table 8. Time to extract structural signatures for selected NPS Govdocs1 documents

 18

Documents that were created with identical input to different tools produced

different structural signatures. For example, the documents whose structure is represented

in Figures 7, 8, 9, and 10. are visually similar when opened with a PDF reader. The

structures represented in Figure 7 and Figure 10 were generated from the same document,

but with method #1 and method #2, respectively.

Figure 7. A structural signature, generated with method #1, for a sample
document created with Adobe Acrobat

Figure 8. A structural signature, generated with method #1, for a sample
document created with Microsoft Word and saved using Adobe PDFMaker

Figure 9. A structural signature, generated with method #1, for a sample
document created with Nitro8

Figure 10. A structural signature, generated with method #2, for a sample
document created with Adobe Acrobat

2. Document Classification

a. Regular Expressions

We were able to create regular expressions to classify each of our training

documents by the tool that created them. One to three object labels was sufficient to

identify each of our training files with no false positives or negatives. In most cases, a

single regular expression was sufficient to identify all documents associated with a

particular tool. Documents created by Nitro Pro 8 carried one of two possible identifying

signatures, depending on whether they were created natively within the program, or

imported from another file (see Table 9).

 19

Program Name Regular Expression
AbiWord 2.8.6 ^Page,.*Catalog$

Adobe Acrobat XI
Professional

^XRef

FreePDFConvert.com ^Catalog,Pages,.+Metadata$

LibreOffice 3.4
340m1(Build:602)

^FontDescriptor,.*Catalog$

Microsoft Office 2007
SP3

^Catalog,.*XRef$

Neevia ^Page,.*Catalog,Metadata$

Nitro Pro 8 (native) ^Catalog,.*XObject,.*(?:Outlines|XObject)$

Nitro Pro 8 (converter) ^Metadata,.*Pages$

PDFOnline Page,Pages(?:$|,FontDescriptor)

WordPerfect X6 ^Catalog,.+Pages,Metadata$

Table 9. Regular expressions used for classifying fingerprints
generated with method #1

Some identifying fingerprints were easy to develop, but others required

refactoring, as new samples were added, to avoid false classifications. For example, the

first indirect object in documents generated by Adobe tools, including both Adobe

Acrobat and PDFMaker, is always a cross-reference table object, or XRef. A simple

regular expression, identifying a single XRef object at the beginning of a document’s

structure, was sufficient to identify all Adobe-generated documents, and never falsely

classified a document that was created by another tool.

b. N-gram Analysis

Our n-gram classification process yielded encouraging results against our

training data for a variety of n-gram sizes. Profiles generated with signatures created with

method #2 resulted in slightly higher classification accuracy than method #1 when trained

and exercised against our entire training set (see Tables 10 and 11, and Figure 11). The

 20

accuracy of both methods peaked at around 92% for n-gram sizes of between two and

four elements. Even with an n-gram size of one, accuracy was better than 50%, although

this may have been an artificiality introduced by our small documents and selection size .

The reduction of accuracy at higher n-gram sizes was likely due to the limited size of our

sample documents. For example, no 12-grams exist in a document with only 11 structural

elements, so we would be unable to train against or classify documents with 11 or fewer

structural elements.

n Number of correctly-
classified samples

Classification
Accuracy

1 29 0.518
2 51 0.911
3 52 0.928
4 53 0.946
5 50 0.892
6 48 0.857
7 42 0.750
8 34 0.607
9 22 0.393
10 12 0.214
11 7 0.125
12 6 0.107
13 5 0.089
14 3 0.054
15 0 0

Table 10. N-gram classification results against 56 training documents with
n-grams of size n and signature generation method #1

 21

n Number of correctly-
classified samples

Classification
Accuracy

1 34 0.607
2 52 0.928
3 52 0.928
4 52 0.928
5 48 0.857
6 48 0.857
7 46 0.821
8 39 0.696
9 32 0.571
10 23 0.411
11 13 0.232
12 8 0.143
13 7 0.125
14 5 0.089
15 2 0.036
16 0 0

Table 11. N-gram classification results against 56 training documents with n-grams
of size n and signature generation method #2

Figure 11. Graph representing n-gram classification accuracy against 56 training documents
for n-gram sizes one through 16 and signature generation methods #1 and #2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
la
ss
if
ic
at
io
n
 A
cc
u
ra
cy

N‐gram size

Method #1 Method #2

 22

Five-fold cross-validation yielded similar results (see Figure 12). The long

tail is likely due to three documents, which each contained the same 14 indirect object

sequences. Because of the limited number of training documents that were created with

some tools, some training sets did not contain documents created by all possible tools,

resulting in lower accuracy.

Figure 12. Graph representing n-gram classification accuracy in five-fold cross-
validation, per-set, for n-gram sizes one through 16 and signature

generation method #1

Using n-grams of size four, further analysis was conducted using five-fold

cross-validation to obtain more specific accuracy information for each program (see

Tables 12 and 13). The only program that seemed to be classified differently as a result of

using different signature generation methods was LibreOffice. It is also interesting to

note that the classification accuracy did not seem to be directly correlated with the

number of training samples. For example, both AbiWord and Adobe had similar

classification accuracies, even though our training corpus only had two samples from

AbiWord, and 14 from Adobe tools. In cross-validation with training partitions that only

contained one AbiWord-generated document, we were still able to identify another

AbiWord-generated document.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
la
ss
if
ic
at
io
n
 A
cc
u
ra
cy

N‐gram size

Set 1 Set 2 Set 3 Set 4 Set 5

 23

Software Name False‐positive False‐negative True‐positive True‐negative

AbiWord 0.000 0.000 1.000 1.000

Adobe 0.000 0.000 1.000 1.000

FreePDFConvert 0.000 0.600 0.400 1.000

LibreOffice 0.000 0.300 0.700 1.000

Microsoft Office 2007 0.062 0.000 1.000 0.938

Neevia 0.020 0.000 1.000 0.980

Nitro 0.000 0.100 0.900 0.800

PDFOnline 0.000 0.300 0.700 1.000

WordPerfect 0.000 0.000 1.000 1.000

Table 12. Per-program n-gram classification accuracy for n-grams of size four and
signature generation method #1

Software Name False‐positive False‐negative True‐positive True‐negative

AbiWord 0.000 0.000 1.000 1.000

Adobe 0.000 0.000 1.000 1.000

FreePDFConvert 0.000 0.600 0.400 1.000

LibreOffice 0.000 0.000 1.000 1.000

Microsoft Office 2007 0.062 0.000 1.000 0.938

Neevia 0.020 0.000 1.000 0.980

Nitro 0.000 0.100 0.900 0.800

PDFOnline 0.000 0.300 0.700 1.000

WordPerfect 0.000 0.000 1.000 1.000

Table 13. Per-program n-gram classification accuracy for n-grams of size four and
signature generation method #2

B. CONCLUSIONS

Our results indicate that PDF document structure may be a reliable means for

identifying the tool that was used to create a document. Structural fingerprints are harder

to forge than metadata or content-specific signatures, and would require reordering a

document’s objects to obfuscate or obscure. Most of the tools that we used to generate

our training corpus create unique fingerprints that are identifiable in documents

containing diverse content types. The signature-generation process can be easily scalable

to support near-real-time analysis.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

V. FUTURE WORK

We were able to build reliable identifying fingerprints for a small number of tools

and content types using documents that we generated (see Table 1). However, given the

limited sample size and the simplicity of the generated documents, this is not especially

surprising or useful. It remains unclear if these approaches can scale to the larger sample

sizes and more complicated documents in such a way that is suitable for real-time

classification. When we tested our fingerprints against samples from the NPS Govdocs1

corpus [37], many of our classification results did not match what document metadata

indicated. It is possible that these documents had incorrect or misleading metadata, or

that our fingerprints could not be generalized to this collection, but, without information

about the tools that actually created the documents, we cannot make claims about these

hypotheses. Additionally, our ability to make strong claims about the effectiveness of our

methods was limited by small sample sizes for each tool. We leave it to future work to

build similar fingerprints for other tools and more complex documents.

Of particular interest are documents that are generated by tools that may provide

more precise control to users over how a document’s structure is constructed. We did not

test documents that were generated by tools such as LaTeX or compiled from DVI or

PostScript. It may be possible for an adversary to evade or forge structural signatures,

such as the ones explored in this thesis, if the compiler does not leave a signature that is

distinguishable from user-provided content.

All of the regular expression-based identifying fingerprints were built by hand

after visually inspecting the structural signature of each sample documents. This

approach would likely not scale well in real-world use, as it requires human interaction to

analyze the structures of each of the training documents in order to identify unique

patterns and is difficult to convert into a reliably repeatable process..

Our n-gram-based approach yielded encouraging results against our training data,

but it is unsure how well the approach scales to larger and more complicated documents.

The training documents were simple, with no more than 14 indirect objects each.

 26

Additionally, we did not take into account the positions of each n-gram within the greater

structure, which may serve as a more reliable indicator in future work.

It would also be of interest to examine how resistant both the regular-expression

and n-gram analysis classification methods are to malicious or targeted subversion of an

analyzed document’s structure. If a human is able to craft content in a tool which results

in a radically different signature than other documents which were created by the same

tool, it may be challenging to accurately classify a document.

There is room for future work in examining the structure of incrementally-

modified PDF documents. When we used tools which were able to open and modify

existing PDF documents, the new documents bore the signature of the most recent tool

that was used to modify the file. However, it is possible for an incrementally-modified

PDF document to be modified and contain signatures for multiple tools. When examining

the Govdocs1 corpus, we found very few examples of documents that appeared to have

been modified in this way, with chained trailers and cross-reference tables, but were

unable to determine which tools were used to create them.

We briefly investigated the idea of combining metadata analysis and idiomatic

artifact identification with our other approaches to identify suspicious or potentially-

subverted documents. If a document’s metadata indicates that it was created with one

tool, but the structural signature indicates another, it is possible that an author has

modified their document beyond what the original tool generated.

During the process of this research, we discovered a lack of large collections of

PDF documents with known provenance. Although there are resources, such as the NPS

Govdocs1 corpus, for large numbers of documents found in the wild, we were unable to

leverage these documents for reliable training purposes because we were unable to verify

which tools created them without blindly trusting the documents’ metadata. There are,

occasionally, small collections of documents, associated with a single tool, which are

intended to demonstrate that tool’s capabilities. It is essential to future work that large

bodies of PDF documents, from a wide variety of tools, with a variety of content types,

and of known provenance are available. This corpus should include documents which

 27

utilize the full range of capabilities of the PDF specification, such as encryption, forms,

and scripted actions, as well as readily comparable documents which were created from

identical inputs and have similar appearance. Additionally, tools with different modes of

operation, such as ones which allow native content creation, as well as conversion

between formats, should be fully explored.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

APPENDIX

A. SCRIPT USED TO GENERATE METHOD #1 SIGNATURES
(GETSTRUCTURE.SH)

#!/bin/bash
File: getStructure.sh
Structural signature generation method #1
Uses Didier Stevens’ pdf-parser to extract object names
./bin/pdf-parser.py “$1” | grep -a -A 1 “obj” | sed -rn
“s/\s*Type:\s*\/(\S+)/\1/p”

 30

B. SCRIPT USED TO GENERATE METHOD #2 SIGNATURES
(GETSTRUCTURE.PY)

#!/usr/bin/python

File: getStructure.py
Structural signature generation method #2
Extracts “Type” values from the input file(s)
Written by John Donaldson

import re
import mmap
import sys

typere = re.compile(“Type\s*\/(\w+)”)

def getStructure(filename):
 structure = []
 with open(filename, “rb”) as fileHandle:
 data = mmap.mmap(fileHandle.fileno(),0,prot=mmap.PROT_READ)
 for result in typere.finditer(data):
 structure.append(result.group(1))

 return ,.”“join(structure)

if __name__ == “__main__”:
 for filename in sys.argv[1:]:
 print(getStructure(filename))

C. SCRIPT USED TO CLASSIFY STRUCTURAL SIGNATURES WITH
REGULAR EXPRESSIONS (CLASSIFYSTRUCTURE.PY)

#!/usr/bin/python

File: classifyStructure.py
Classifies a PDF document by its structure, using provided fingerprints

import sys
from StructureFingerprints import fingerprints
import getStructure

def classify(structure):
 structure = ,.”“join(structure)
 structure = structure.strip()
 guesses = []

 31

 for fingerprint, name in fingerprints.iteritems():
 if fingerprint.search(structure) != None:
 if name not in guesses:
 guesses.append(name)

 if len(guesses) == 0:
 print(“Couldn’t classify”)
 elif len(guesses) == 1:
 print(guesses[0])
 else:
 print(“-------------Multiple possibilities-----------------”)
 for guess in guesses:
 print(guess)

def classifyFile(filename):
 return classify(getStructure.getStructure(filename))

if __name__ == “__main__”:
 if (len(sys.argv) > 1):
 for filename in sys.argv[1:]:
 classify(map(lambda x: x.strip().lower(), open(sys.argv[1]).readlines()))
 else:
 classify(map(lambda x: x.strip().lower(), sys.stdin.readlines()))

D. STRUCTUREFINGERPRINTS.PY

import re

File: StructureFingerprints.py
Contains fingerprints for identifying PDF document creators
Fingerprints are only for method #1

reFlags = re.I

fingerprintsBase = {

 “^Catalog,.*xref$”:”Microsoft Office 2007+,”
 “^FontDescriptor,.*Catalog$”:”LibreOffice,”
 “^Page,.*Catalog$”:”AbiWord,”
 “^xref”:”Adobe,”
 “^Page,.*Catalog,Metadata$”:”Neevia,”
 “^Catalog,.+Pages,Metadata$”:”WordPerfect X6,”
 “^Catalog,Pages,.+Metadata$”:”FreePDFConvert.com,”
 “^Metadata,.*Pages$”:”Nitro8-convert,”

 32

 “^Catalog,.*XObject,.*(?:Outlines|XObject)$”:”Nitro8-native,”
 “Page,Pages(?:$|,FontDescriptor)”:”PDFOnline,”
}

fingerprints = {}

for fingerprint, name in fingerprintsBase.iteritems():
 fingerprints[re.compile(fingerprint,reFlags)] = name

E. N-GRAM ANALYSIS AND CLASSIFICATION PROGRAM
(NGRAMCLASSIFY.PY)

#!/usr/bin/python

from nltk.tokenize import word_tokenize
from nltk.util import ngrams
import os
import os.path

trained = False
trainedData = {}

def getFileTokens(filename):
 tokens = []
 with open(filename,”r”) as infile:
 tokens = word_tokenize(infile.read().replace(,,”““\n”))
 return tokens

def getFileNgrams(filename, ngramSize):
 return(ngrams(getFileTokens(filename),int(ngramSize)))

Walk through a path, extracting n-grams from files and associating
them with the directory that contains them. E.g., the file
./my_docs/foo/bar.struct would be associated with the program “foo”
def loadProgramNgrams(ngramSize,basepath=.”/,”normalize=True):
 programNgrams = {}
 for root, dirs, files in os.walk(basepath):
 program = os.path.basename(root)
 if program != ‘‘ and program not in programNgrams:
 programNgrams[program] = {}
 for filename in files:
 filepath = os.path.join(root,filename)
 currNgrams = getFileNgrams(filepath,ngramSize)

 33

 for ngram in currNgrams:
 if ngram in programNgrams[program]:
 programNgrams[program][ngram] += 1
 else:
 programNgrams[program][ngram] = 1

 # Normalize
 if program != ‘‘ and normalize:
 totalNgrams = 0
 for ngram,count in programNgrams[program].iteritems():
 totalNgrams += count

 for ngram in programNgrams[program]:
 programNgrams[program][ngram] =
programNgrams[program][ngram]/float(totalNgrams)

 return programNgrams

def printNgrams(ngramSize,basepath=.”/”):
 ngramCounts = loadProgramNgrams(ngramSize,basepath)
 for program,ngrams in ngramCounts.iteritems():
 print(“{0}:.”format(program))
 for ngram,count in ngrams.iteritems():
 print(“\t{0} -- {1}.”format(ngram,count))

def getTrainingData(ngramSize,basepath=.”/”):
 global trained
 global trainedData

 # If we have already trained, just return the cached results
 if trained:
 return trainedData

 programNgrams = loadProgramNgrams(ngramSize,basepath,normalize=True)
 ngramProgramScores = {}
 for program, ngrams in programNgrams.iteritems():
 for ngram,score in ngrams.iteritems():
 if ngram not in ngramProgramScores:
 ngramProgramScores[ngram] = []

 ngramProgramScores[ngram].append((program,score))

 trainedData = ngramProgramScores

 34

 trained = True

 return ngramProgramScores

def printNgramProgramAssociations(ngramSize,basepath=.”/”):
 ngramProgramScores = getTrainingData(ngramSize,basepath)
 for ngram,programs in ngramProgramScores.iteritems():
 print(“{0}:.”format(ngram))
 for program,score in programs:
 print(“\t{0} -- {1}.”format(program,score))

def getScores(ngramSize,unknownSample,basepath=.”/”):
 ngramProgramScores = getTrainingData(ngramSize,basepath)
 unknownNgrams = getFileNgrams(unknownSample,ngramSize)
 programScores = {}

 for ngram in unknownNgrams:
 if ngram in ngramProgramScores:
 for possibleProgram,score in ngramProgramScores[ngram]:
 if possibleProgram not in programScores:
 programScores[possibleProgram] = 0
 programScores[possibleProgram] += score

 # Normalize scores back down to between 0 and 1. These aren’t percentages,
 # but give us a nicer range of numbers to work with.
 totalScore = 0.0
 for score in programScores.values():
 totalScore += score

 for program in programScores:
 programScores[program] /= totalScore

 return programScores

def classify(ngramSize,unknownSample,basepath=.”/”):
 scores = getScores(ngramSize,unknownSample,basepath)
 mostLikely = ““
 topScore = 0
 # This information is interesting if we care about how close the next-best result is
 secondScore = 0
 secondLikely = ““

 for program, score in scores.iteritems():
 if score > topScore:
 secondScore = topScore

 35

 secondLikely = mostLikely
 topScore = score
 mostLikely = program

 if topScore == 0:
 mostLikely = “Unknown”
 topScore = 1.0
 return mostLikely

Check to see if a sample, whose provenance we know, is correctly
classified. Returns True if it matches, False if we classified incorrectly
def validate(ngramSize,unknownSample,basepath):
 expected = os.path.basename(os.path.dirname(unknownSample))
 result = classify(ngramSize,unknownSample,basepath)
 print(“Expected {}, got {}.”format(expected,result))
 if expected == result:
 return True
 else:
 return False

if __name__ == “__main__”:
 import sys
 if len(sys.argv) > 2:
 ngramSize = sys.argv[1]
 trainingLocation = sys.argv[2]
 files = sys.argv[3:]
 for filename in files:
 result = classify(ngramSize,filename,trainingLocation)
 print(“{:50}: {}.”format(os.path.basename(filename),result))
 else:
 print(“Usage: {} <ngram size> <path to training data> <files to classify
...>.”format(sys.argv[0]))
 print(“\tMultiple files may be classified at once”)
 print(“\tTraining data is expected to be in the following format, under the
provided path:”)
 print(“\tProvided path \\”)
 print(“\t\tname_of_program1 \\”)
 print(“\t\t\tstruct_file_from_program1_1”)
 print(“\t\t\tstruct_file_from_program1_2”)
 print(“\t\t\t. . .”)
 print(“\t\tname_of_program2 \\”)
 print(“\t\t\tstruct_file_from_program2_1”)
 print(“\t\t\tstruct_file_from_program3_2”)
 print(“\t\t\t. . .”)

 36

 print(“\t\t. . .”)
 print(“\n\tTraining files should contain structural elements, either line- or
comma-delimited”)

 37

LIST OF REFERENCES

 [1] “Digital Corpora >> Govdocs1—simple statistical report,” 30 September 2012.
[Online]. Available: http://digitalcorpora.org/corpora/files/govdocs1-simple-
statistical-report

[2] Symantec Corporation, “Symantec Internet security threat report 2013: Volume 18,
Appendix,” April 2013. [Online]. Available:
http://www.symantec.com/content/en/us/enterprise/other_resources/b-
istr_appendices_v18_2012_221284438.en-us.pdf

[3] F-Secure, “PDF based targeted attacks are increasing—F-Secure Weblog : News
from the Lab,” 9 March 2010. [Online]. Available: http://www.f-
secure.com/weblog/archives/00001903.html

[4] F-Secure, “PDF most common file type in targeted attacks,” 6 May 2009. [Online].
Available: http://www.f-secure.com/weblog/archives/00001676.html

[5] Microsoft Corporation, “Security intelligence report (SIR) vol. 14,” 17 April 2013.
[Online]. Available: http://www.microsoft.com/security/sir/default.aspx

[6] National Security Agency, “Hidden data and metadata in Adobe PDF files:
publication risks and countermeasures,” 27 July 2008.
http://www.nsa.gov/ia/_files/app/pdf_risks.pdf

[7] Adobe Systems Incorporated, Portable document format reference manual,
Addison-Wesley, 1993.

[8] L. Leurs, “The history of PDF | How the file format and Acrobat evolved,” 27
January 2013. [Online]. Available: http://www.prepressure.com/pdf/basics/history

[9] Adobe Systems Incorporated, “Document management – portable document format
– part 1: PDF 1.7,” 1 July 2008. [Online]. Available:
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/
pdfs/PDF32000_2008.pdf

[10] ISO, “PDF format becomes ISO standard,” 2 July 2008. [Online]. Available:
http://www.iso.org/iso/home/news_index/news_archive/news.htm?refid=Ref1141

[11] Document management – Electronic document file format for long-term
preservation – Part 1: Use of PDF 1.4 (PDF/A-1,), ISO 19005–1:2005.

 38

[12] “Adobe supplement to the ISO 32000,” June 2008. [Online]. Available:
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/
pdfs/adobe_supplement_iso32000.pdf

[13] Adobe Systems Incorporated, “PDF reference, version 1.7,” November 2006.
[Online]. Available:
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/
pdfs/pdf_reference_1–7.pdf

[14] Document management – Portable document format – Part 1: PDF 1.7, ISO
32000–1:2008.

[15] Adobe Systems Incorporated, “JavaScript for Acrobat | Adobe developer
connection,” [Online]. Available:
http://www.adobe.com/devnet/acrobat/javascript.html

[16] D. Stevens, “Escape from PDF | Didier Stevens,” 29 March 2010. [Online].
Available: http://blog.didierstevens.com/2010/03/29/escape-from-pdf/

[17] C. Smutz and A. Stavrou, “Malicious PDF detection using metadata and structural
features,” in Annual Computer Security Applications Conference, Orlando, 2012.

[18] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas, “Effective
identification of source code authors using byte-level information,” in Proceedings
of the 28th International Conference on Software Engineering, Shanghai, 2006.

[19] N. E. Rosenblum, B. P. Miller, and X. Zhu, “Extracting compiler provenance from
program binaries,” in 9th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, New York, 2010.

[20] “PDFAnalysis - pyew - Analysis of malicious PDF files - A Python tool for static
malware analysis,” 7 June 2010. [Online]. Available:
http://code.google.com/p/pyew/wiki/PDFAnalysis

[21] J. M. Esparza, “peepdf - PDF analysis tool | eternal-todo.com,” 16 May 2011.
[Online]. Available: http://eternal-todo.com/tools/peepdf-pdf-analysis-tool

[22] G. Delugré and F. Raynal, “Origami - Sogeti ESEC lab,” Sogeti, 24 May 2011.
[Online]. Available: http://esec-lab.sogeti.com/pages/Origami

 39

[23] D. Stevens, “Quickpost: About the physical and logical structure of PDF files |
Didier Stevens,” 9 April 2008. [Online]. Available:
http://blog.didierstevens.com/2008/04/09/quickpost-about-the-physical-and-logical-
structure-of-pdf-files/

[24] D. Stevens, “PDF, let me count the ways... | Didier Stevens,” 29 April 2008.
[Online]. Available: http://blog.didierstevens.com/2008/04/29/pdf-let-me-count-
the-ways/

[25] D. Stevens, “PDF tools,” November 2008. [Online]. Available:
http://blog.didierstevens.com/programs/pdf-tools/

[26] “AbiWord,” AbiSource, 13 June 2010. [Online]. Available:
http://www.abisource.com/

[27] “PDF converter, PDF editor, convert to PDF | Adobe Acrobat XI Pro,” Adobe
Systems Incorporated, May 2013. [Online]. Available:
http://www.adobe.com/products/acrobatpro.html

[28] Baltsoft Software, “PDF Converter - convert to PDF online free,” Baltsoft
Software, 3013. [Online]. Available: http://www.freepdfconvert.com/

[29] “Home >> LibreOffice,” The Document Foundation, 4 April 2013. [Online].
Available: http://www.libreoffice.org/default/

[30] “Office - Office.com,” Microsoft, 25 October 2011. [Online]. Available:
http://office.microsoft.com/en-us/

[31] “Free online PDF converter, batch convert doc, docx to PDF, PDF/A or image, doc
converter,” Neevia Technology, 2013. [Online]. Available:
http://docupub.com/pdfconvert/

[32] “Create, convert & edit PDF files | Nitro,” Nitro PDF Pty. Ltd., 21 April 2013.
[Online]. Available: http://www.nitropdf.com/

[33] “Online PDF converter — create PDF & convert PDF to word —free!,” BCL
Technologies, 2013. [Online]. Available: http://www.pdfonline.com/convert-pdf/

[34] “Corel WordPerfect Office – wordperfect.com,” Corel Corporation, 26 April 2013.
[Online]. Available: http://www.corel.com/corel/pages/index.jsp?pgid=12100162

 40

[35] Information technology – Document description and processing languages – Office
Open XML File Formats – Part 4: Transitional Migration Features, ISO/IEC
29500, 2012.

[36] Adobe Systems Incorporated, “Adobe - Acrobat : for Windows : Adobe PDFMaker
1.0 for Microsoft Word 97 (Final),” Adobe Systems, 14 January 1998. [Online].
Available: http://www.adobe.com/support/downloads/detail.jsp?ftpID=483

[37] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing science to digital
forensics with standardized forensic corpora,” Digital Investigation, no. 6, pp. S2-
S11, 2009.

[38] W.-J. Li, K. Wang, S. Stolfo, and B. Herzog, “Fileprints: identifying file types by
n-gram analysis,” in Proceedings from the Sixth Annual IEEE SMC, West Point,
2005.

[39] D. Cao, J. Luo, M. Yin, and H. Yang, “Feature selection based file type
identification algorithm,” in Intelligent Computing and Intelligent Systems, 2010
IEEE International Conference on, Xiamen, 2010.

 41

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

